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Unit 9 

Regression and Correlation 
 
 

 
 

“Assume that a statistical model such as a linear model 
is a good first start only” 

 
- Gerald van Belle 

 

 

 

   

  
Is higher blood pressure in the mom associated with a lower birth weight of 
her baby?  Simple linear regression explores the relationship of one 
continuous outcome (Y=birth weight) with one continuous predictor 
(X=blood pressure).  At the heart of statistics is the fitting of models to 
observed data followed by an examination of how they perform.   
 

-1-  “somewhat useful” 
The fitted model is a sufficiently good fit to the data if it permits 
exploration of hypotheses such as “higher blood pressure during 
pregnancy is associated with statistically significant lower birth 
weight” and it permits assessment of confounding, effect 
modification, and mediation.  These are ideas that will be developed 
in BIOSTATS 640 Unit 2, Multivariable Linear Regression. 
 
-2-  “more useful” 
The fitted model can be used to predict the outcomes of future 
observations. For example, we might be interested in predicting the 
birth weight of the baby born to a mom with systolic blood pressure 
145 mm Hg.  
 
-3- “most useful” 
Sometimes, but not so much in public health, the fitted model 
derives from a physical-equation.  An example is Michaelis-Menton 
kinetics.  A Michaelis-Menton model is fit to the data for the 
purpose of estimating the actual rate of a particular chemical 
reaction.     

 
Hence – “A linear model is a good first start only…”  
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                                                             1. Unit Roadmap 
 
 

   
Nature/ 

Populations 

 
 
 

 
Simple linear regression is used when 
there is one response (dependent, Y) 
variable and one explanatory 
(independent, X) variables and both are 
continuous.   
 
Examples of explanatory (independent) – 
response (dependent) variable pairs are 
height and weight, age and blood pressure, 
etc 
 
-1-  A simple linear regression analysis 
begins with a scatterplot of the data to 
“see” if a straight line model is 
appropriate: 
 
                   0 1y  =  β   +  β x           where 
 
Y = the response or dependent variable  
X = the explanatory or independent 
variable.    
 
-2- The sample data are used to estimate 
the parameter values and their standard 
errors. 
 
β1 = slope (the change in y per 1 unit 
                    change in x) 
β0 = intercept (the value of y when x=0) 
 
 
-3- The fitted model is then compared to 
the simpler model 0y  =  β  which says 
that y is not linearly related to x. 

   
 
 

 

   
Sample 

 

 

   
 
 

 

   
Observation/ 

Data 

 

   
 
 

 

   
Relationships 

Modeling 
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& 
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2. Learning Objectives 

 
   
  

When you have finished this unit, you should be able to: 
 

§ Explain what is meant by independent versus dependent variable and what is meant by a  
linear relationship; 
 

§ Produce and interpret a scatterplot; 
 

§ Define and explain the intercept and slope parameters of a linear relationship; 
 

§ Explain the theory of least squares estimation of the intercept and slope parameters of a linear 
relationship; 
 

§ Calculate by hand least squares estimation of the intercept and slope parameters of a linear 
relationship; 
 

§ Explain the theory of the analysis of variance of simple linear regression; 
 

§ Calculate by hand the analysis of variance of simple linear regression; 
 

§ Explain, compute, and interpret R2 in the context of simple linear regression; 
 

§ State and explain the assumptions required for estimation and hypothesis tests in regression; 
 

§ Explain, compute, and interpret the overall F-test in simple linear regression; 
 

§ Interpret the computer output of a simple linear regression analysis from a package such as R, 
Stata, SAS, SPSS, Minitab, etc.; 
 

§ Define and interpret the value of a Pearson Product Moment Correlation, r ;  
 

§ Explain the relationship between the Pearson product moment correlation r and the linear 
regression slope parameter; and  
 

§ Calculate by hand confidence interval estimation and statistical hypothesis testing of the 
Pearson product moment correlation r. 
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3.  Definition of the Linear Regression Model 
 
 
Unit 8 considered two categorical (discrete) variables, such as smoking (yes/no) and low birth weight (yes/no).  
It was an introduction to chi-square tests of association. 
 
Unit 9 considers two continuous variables, such as age and weight.  It is an introduction to simple linear 
regression and correlation. 
 
A wonderful introduction to the intuition of linear regression can be found in the text by Freedman, Pisani, and 
Purves (Statistics.  WW Norton & Co., 1978).  The following is excerpted from pp 146 and 148 of their text: 
 

“How is weight related to height?  For example, there were 411 men aged 18 to 24 in Cycle I of 
the Health Examination Survey.  Their average height was 5 feet 8 inches = 68 inches, with an 
overall average weight of 158 pounds.  But those men who were one inch above average in 
height had a somewhat higher average weight.  Those men who were two inches above average 
in height had a still higher average weight.  And so on.  On the average, how much of an 
increase in weight is associated with each unit increase in height? The best way to get started is 
to look at the scattergram for these heights and weights.  The object is to see how weight 
depends on height, so height is taken as the independent variable and plotted horizontally …   

 
 … The regression line is to a scatter diagram as the average is to a list.  The regression line 
estimates the average value for the dependent variable corresponding to each value of the 
independent variable.”  
 
 

Linear Regression 
 
Linear regression models the mean µ = E [Y] of one random variable Y as a linear function of one or more 
other variables (called predictors or explanatory variables) that are treated as fixed.  The estimation and 
hypothesis testing involved are extensions of ideas and techniques that we have already seen.    In linear 
regression,  
 

♦ Y is the outcome or dependent variable that we observe.  We observe its values for 
individuals with various combinations of values of a predictor or explanatory variable X. 
There may be more than one predictor “X”; this will be discussed in BIOSTATS 640. 
 

♦ In simple linear regression the values of the predictor “X” are assumed to be fixed. 
 

♦ Often, however, the variables Y and X are both random variables. 
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Correlation 
 
Correlation considers the association of two random variables. 
 

♦ The techniques of estimation and hypothesis testing are the same for linear regression and 
correlation analyses. 
 

♦ Exploring the relationship begins with fitting a line to the points. 
 

 
 
Development of a simple linear regression model analysis 
 
Example.   
Source:  Kleinbaum, Kupper, and Muller 1988 
The following are observations of age (days) and weight (kg) for n=11 chicken embryos.    
 

 
WT=Y AGE=X LOGWT=Z 
0.029 6 -1.538 
0.052 7 -1.284 
0.079 8 -1.102 
0.125 9 -0.903 
0.181 10 -0.742 
0.261 11 -0.583 
0.425 12 -0.372 
0.738 13 -0.132 
1.13 14 0.053 

1.882 15 0.275 
2.812 16 0.449 

 
Notation 
 

♦ The data are 11 pairs of (Xi, Yi) where X=AGE and Y=WT 
(X1, Y1) = (6, .029)  … (X11, Y11) = (16 , 2.812) and 
 

♦ This table also provides 11 pairs of (Xi, Zi) where X=AGE and Z=LOGWT 
(X1, Z1) = (6, -1.538)  … (X11, Z11) = (16 , 0.449) 

 
 
 
 



BIOSTATS 540  - Fall 2015                                                Regression and Correlation                                             Page 7 of 44 
 

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

 

 

 
Research question 
There are a variety of possible research questions: 
 

(1)  Does weight change with age? 
 
(2)  In the language of analysis of variance we are asking the following:  Can the variability in  
      weight be explained, to a significant extent, by variations in age? 
 
(3)  What is a “good” functional form that relates age to weight? 

 
Tip!  Begin with a Scatter plot. Here we plot X=AGE versus Y=WT 

 
 
 
We check and learn about the following: 
                            

♦ The average and median of X 
♦ The range and pattern of variability in X 
♦ The average and median of Y 
♦ The range and pattern of variability in Y 
♦ The nature of the relationship between X and Y 
♦ The strength of the relationship between X and Y 
♦ The identification of any points that might be influential 
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Example, continued 
 

♦ The plot suggests a relationship between AGE and WT 
♦ A straight line might fit well, but another model might be better 
♦ We have adequate ranges of values for both AGE and WT  
♦ There are no outliers 

 
 
The “bowl” shape of our scatter plot suggests that perhaps a better model relates the logarithm of WT 
(Z=LOGWT) to AGE: 
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We might have gotten any of a variety of plots. 
 

  

 

 
 
 
 
      No relationship between X and Y 

 
 
 
 
        

 

 
 
 
 
     Linear relationship between X and Y 

 
 
 
 

 

 
 
 
 
    Non-linear relationship between X and Y 
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    Note the outlying point  
 
    Here, a fit of a linear model will yield an 
   estimated slope that is spuriously 
    non-zero. 

 
 
 
 
 

 

 
 
   Note the outlying point  
    
   Here, a fit of a linear model will yield an 
   estimated slope that is spuriously  
   near zero. 

 
 
 
 
 

 

 
  Note the outlying point  
 
   Here, a fit of a linear model will yield an  
   estimated slope that is spuriously 
   high. 
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Review of the Straight Line 
Way back when, in your high school days, you may have been introduced to the straight line function, defined 
as “y = mx  +  b” where m is the slope and b is the intercept.  Nothing new here.  All we’re doing is changing 
the notation a bit: 
 

(1)  Slope :      m   à  β1 
(2)  Intercept:  b  à β0 

 

 
 
Slope 

 
Slope > 0 Slope = 0 Slope < 0 
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Definition of the Straight Line Model 
Y = β0 + β1 X 

 
Population Sample 
 

0 1Y  =  β  + β X  + ε  
 

0 1
ˆ ˆY  =  β  + β X  + e  

 
0 1Y  =  β  + β X  + ε  

 
      = relationship in the population.  
 
 0 1Y  =  β  + β X   is measured with error ε defined   

 
        0 1ε = [Y] - [β  + β X]  

 

0 1
ˆ ˆβ , β  and e are estimates of 0 1β , β  and ε  
Note:  So you know, these may also be written as 
b0, b1, and e 
 
 
residual = e is now the difference between the 
observed and the fitted (not the true) 
 

0 1
ˆ ˆe = [Y] - [β  + β X] 

 
0 1β , β  and ε  are all unknown!!  

 

 
We obtain guesses of these unknowns, called 

0 1
ˆ ˆβ , β  and e by the method of least squares 
estimation. 
 

 
0 1
ˆ ˆβ , β  and e are known 

  
How close did we get? 
To see if 0 0β̂   β≈  and  1 1β̂   β≈ we perform 
regression diagnostics. 
 
Regression diagnostics are discussed in BIOSTATS 640 
 

Notation … sorry … 
      Y = the outcome or dependent variable 
       X = the predictor or independent variable 
 
      µY = The expected value of Y for all persons in the population 
 µY|X=x = The expected value of Y for the sub-population for whom X=x 
 
 
     σY

2  =  Variability of Y among all persons in the population 
σY|X=x

2  =  Variability of Y for the sub-population for whom X=x 
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4.  Estimation 
 
Least squares estimation is used to obtain guesses of β0 and β1. 
 
When the outcome = Y is distributed normal, least squares estimation is the same as maximum likelihood 
estimation.  Note – If you are not familiar with “maximum likelihood estimation”, don’t worry.  This is introduced 
in BIOSTATS 640.          
 
 
“Least Squares”, “Close” and Least Squares Estimation 
 
Theoretically, it is possible to draw many lines through an X-Y scatter of points.  Which to choose?  “Least 
squares” estimation is one approach to choosing a line that is “closest” to the data. 
 

♦ di = [observed Y  -  fitted !Y  ] for the ith person 

Perhaps we’d like di = [observed Y  -  fitted !Y  ] = smallest possible. 
Note that this is a vertical distance, since it is a distance on the vertical axis. 
 

♦   di
2 = Yi − Ŷi

⎡⎣ ⎤⎦
2

 

Better yet, perhaps we’d like to minimize the squared difference: 
2
id  = [observed Y  -  fitted !Y  ]2 = smallest possible 

 
♦ Glitch.  We can’t minimize each 2

id  separately.  In particular, it is not possible to choose 

common values of 0 1
ˆ ˆβ  and β  that minimizes 

 
                         2

1d =     Y1 − Ŷ1( )2      for subject 1 and  minimizes 

                         2
2d =    Y2 − Ŷ2( )2     for subject 2 and  minimizes  

                                ….                                     … and minimizes 
 
                        2

nd =   Yn − Ŷn( )2   for the nth subject                               

♦ So, instead, we choose values for 0 1
ˆ ˆβ  and β  that, upon insertion, minimizes the total 

 

                                                    
n

2
i

i=1

d =∑  ( ) [ ]( )∑∑
==

+−=−
n

i
ii

n

i
ii XYYY

1

2

10
1

2 ˆˆˆ ββ  
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n

2
i

i=1

d =∑ Yi − Ŷi( )2
i=1

n

∑ = Yi − β̂0 + β̂1Xi
⎡
⎣

⎤
⎦( )2

i=1

n

∑  has a variety of names: 

 
♦ residual sum of squares, SSE or SSQ(residual) 
♦ sum of squares about the regression line 
♦ sum of squares due error (SSE) 
♦ !

|σ Y X

2  
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Least Squares Estimation of the Slope and Intercept 
In case you’re interested …. 

♦ Consider SSE =
n

2
i

i=1

d =∑  Yi − Ŷi( )2
i=1

n

∑ = Yi − β̂0 + β̂1Xi
⎡
⎣

⎤
⎦( )2

i=1

n

∑  

 
♦ Step #1:  Differentiate with respect to β̂1  

                Set derivative equal to 0 and solve for β̂1  . 
 

♦ Step #2:  Differentiate with respect to β̂0  
                Set derivative equal to 0, insert β̂1  and solve for β̂0 . 

 
 
 
Least Squares Estimation Solutions 
Note – the estimates are denoted either using greek letters with a caret or with roman letters  
 
 
 
Estimate of Slope 

1β̂  or 1b  

 

              
( )( )

( )∑

∑

=

=

−

−−
= n

i
i

i

n

i
i

XX

YYXX

1

2

1
1̂β  

 
 
Intercept 

0β̂  or 0b  
 

 
                                ! !β β0 1= −Y X  
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A closer look … 
 
Some very helpful preliminary calculations 
 

• ( )2 2 2
xxS X-X X NX= = −∑ ∑  

• ( )2 2 2
yyS Y-Y Y NY= = −∑ ∑  

• ( )xyS X-X (Y-Y) XY NXY= = −∑ ∑  
 
Note - These expressions make use of a “summation notation”, introduced in Unit 1.     
 
                        The capitol “S” indicates “ summation”.   
                         In Sxy, the first subscript “x” is saying (x-x) .   
                        The second subscript “y” is saying (y-y) .   
 

                                           ( )xyS  = X-X (Y-Y)∑  

 
 
                                                       
                                                      S     subscript x   subscript y 
 
 
 
Slope 

 

β̂1 =
Xi − X( )

i=1

n

∑ Yi −Y( )

Xi − X( )2
i=1

n

∑
=
côv X,Y( )
vâr(X)

 

 

 
           

              xy
1

xx

Sˆ
S

β =  

 

 
Intercept 

 
            ! !β β0 1= −Y X  

 
 
 
              

 
Prediction of Y 

 
               Ŷ=β̂0 + β̂1X  
 
                  = b0 + b1X  

 

 
Do these estimates make sense? 
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Slope 

 

β̂1 =
Xi − X( )

i=1

n

∑ Yi −Y( )

Xi − X( )2
i=1

n

∑
=
côv X,Y( )
vâr(X)

 

 

 
The linear movement in Y with 
linear movement in X is 
measured relative to the 
variability in X. 
 

  !β1= 0 says: 
With a unit change in X, overall 
there is a 50-50 chance that Y 
increases versus decreases 
 

  !β1  ≠ 0 says: 
With a unit increase in X,  
Y increases also ( !β1  > 0) or  Y 

decreases ( !β1  < 0). 
 
Intercept 

 
            ! !β β0 1= −Y X  

 
If the linear model is incorrect, 
or, if the true model does not 
have a linear component, we 
obtain 
!β1= 0 and !β 0= Y  as our best 

guess of an unknown Y 
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Illustration in Stata 
Y=WT and X=AGE 
 
. regress y x  
 
 
Partial listing of output ... 
 
------------------------------------------------------------------------------ 
           y |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .2350727   .0459425     5.12   0.001     .1311437    .3390018 
       _cons |  -1.884527   .5258354    -3.58   0.006     -3.07405    -.695005 
------------------------------------------------------------------------------ 
 
 

 
Annotated …  
------------------------------------------------------------------------------ 
            y =  WEIGHT |      Coef.       Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
                x = AGE |   .2350727 = b1  .0459425     5.12   0.001     .1311437    .3390018 
       _cons = Intercept|  -1.884527 = b0  .5258354    -3.58   0.006     -3.07405    -.695005 
------------------------------------------------------------------------------ 
 
 

 
The fitted line is therefore   WT = -1.884527  +  0.23507*AGE.  It says that each unit increase in AGE of 1 day 
is estimated to predict a 0.23507 increase in weight, WT.  Here is an overlay of the fitted line on our scatterplot. 
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♦ As we might have guessed, the straight line model may not be the best choice. 
 

♦ The “bowl” shape of the scatter plot does have a linear component, however. 
 

♦ Without the plot, we might have believed the straight line fit is okay. 
 
 
 
Illustration in Stata- continued 
Z=LOGWT and X=AGE 
 
. regress z x  
 
 
Partial listing of output ... 
 
------------------------------------------------------------------------------ 
           z |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .1958909   .0026768    73.18   0.000     .1898356    .2019462 
       _cons |  -2.689255    .030637   -87.78   0.000     -2.75856   -2.619949 
------------------------------------------------------------------------------ 
 
 

 
Annotated …  
 
------------------------------------------------------------------------------ 
              Z = LOGWT |      Coef.       Std. Err.      t    P>|t|     [95% Conf. Interval] 
------------------------------------------------------------------------------ 
                 x = AGE|   .1958909 = b1  .0026768    73.18   0.000     .1898356    .2019462 
       _cons = INTERCEPT|  -2.689255 = b0   .030637   -87.78   0.000     -2.75856   -2.619949 
------------------------------------------------------------------------------ 
 
 

 
Thus, the fitted line is LOGWT = -2.68925  +  0.19589*AGE 
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Now the overlay plot looks better: 
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Now You Try … 
Prediction of Weight from Height 
Source:  Dixon and Massey (1969) 
 

Individual Height (X) Weight (Y) 
1 60 110 
2 60 135 
3 60 120 
4 62 120 
5 62 140 
6 62 130 
7 62 135 
8 64 150 
9 64 145 
10 70 170 
11 70 185 
12 70 160 

 
Preliminary calculations 
 
                           X = 63.833 

 
              Y = 141.667  

 
                    Xi

2 = 49,068∑  
 
       Yi

2 = 246,100∑  
 
                 XiYi∑ = 109,380  

 
            Sxx = 171.667  

 
                         Syy = 5,266.667  

 
            

 
Sxy = 863.333 

 
 
 
Slope 

 

                 xy
1

xx

Sˆ
S

β =  

 

   
1
863.333ˆ 5.0291
171.667

β = =  

 
 
Intercept 

 
                ! !β β0 1= −Y X  

 

0
ˆ 141.667 (5.0291)(63.8333)β = −

 
             = -179.3573 
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5.  The Analysis of Variance Table 
 
Recall the sample variance introduced in In Unit 1, Summarizing Data.  

The numerator of the sample variance (S2) of the Y data is ( )2i
1

Y Y
n

i=
−∑  .   

 

This same quantity ( )2i
1

Y Y
n

i=
−∑   is a central figure in regression.  It has a new name, several actually. 

( )2i
1

Y Y
n

i=
−∑   =   “total variance of the Y’s”.     

                          =   “total sum of squares”,  
                          =  “total, corrected” , and  
                          =  “SSY”.   
 
(Note – “corrected” refers to subtracting the mean before squaring.)  
 

The analysis of variance tables is all about ( )2i
1

Y Y
n

i=
−∑   and partitioning it into two components 

1. Due residual (the individual Y about the individual prediction Ŷ) 

2. Due regression (the prediction Ŷ  about the overall mean Y) 
 
 
Here is the partition (Note – Look closely and you’ll see that both sides are the same) 
 

                                          
  
Yi −Y( ) = Yi − Ŷi( ) + Ŷi −Y( )  

 
Some algebra (not shown) reveals a nice partition of the total variability.  
                                     
                                 2 2 2ˆ ˆ( ) ( ) ( )i i i iY Y Y Y Y Y− = − + −∑ ∑ ∑  
 
 
           
Total Sum of Squares  =  Due Error Sum of Squares   +  Due Model Sum of Squares                                           
 



BIOSTATS 540  - Fall 2015                                                Regression and Correlation                                             Page 23 of 44 
 

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

 

 

A closer look… 
 
Total Sum of Squares  =  Due Model Sum of Squares   +  Due Error Sum of Squares 

                             Yi −Y( )
i=1

n

∑
2

= Ŷi −Y( )2 + Yi − Ŷi( )2
i=1

n

∑
i=1

n

∑  

 
                                                                  due model             due error 
                                                              sum of squares      sum of squares 
 

♦ Yi −Y( )= deviation of Yi  from Y that is to be explained 

♦ Ŷi −Y( )  = “due model”, “signal”,  “systematic”,  “due regression” 

♦ Yi − Ŷi( )  = “due error”, “noise”, or  “residual”  
 

We seek to explain the total variability Yi −Y( )
i=1

n

∑
2

 with a fitted model: 

What happens when β1 ≠  0? What happens when β1 = 0? 
 
A straight line relationship is helpful 
 

 
A straight line relationship is not helpful 

 
Best guess is Ŷ = β̂0 + β̂1X  

 
Best guess is Ŷ = β̂0 = Y  
 

 
Due model “sum of squares”  tends to be LARGE 
because 
 

Ŷ −Y( ) = ( β̂0 + β̂1X⎡
⎣

⎤
⎦ −Y )  

 
    = Y − β̂1X + β̂1X −Y  
 
    =  β̂1 X − X( )  
 

 
Due error “sum of squares” tends to be nearly the 
TOTAL because 
 

 Y − Ŷ( ) = Y − β̂0⎡
⎣

⎤
⎦( ) = Y −Y( )   

 

Due error “sum of squares” has to be small Due regression “sum of squares” has to be small 

à 
due(model)
due error( )  will be large 

à 
due model( )
due error( )  will be small 
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How to Partition the Total Variance 
Think: carving a pie into 2 wedges/pieces: 

 (explained)  +  (remainder) 
 
1. total pie  The “total” or “total, corrected” refers to the variability of Y  about Y  

 

            ♦   Yi −Y( )
i=1

n

∑
2

is called the “total sum of squares” 

            ♦  Degrees of freedom = df = (n-1) 
            ♦  Division of the “total sum of squares” by its df yields the “total mean square” 
                

 
2. carve out the piece of the pie explained by the model The “regression” or “due model” refers to the 

variability of !Y  about Y  
 

            ♦   Ŷi −Y( )
i=1

n

∑
2

= β̂1
2 Xi − X( )2
i=1

n

∑ is called the “regression sum of squares”  

            ♦  Degrees of freedom = df = 1 
            ♦  Division of the “regression sum of squares” by its df yields the “regression mean square” or  
                     “model mean square”.  It is an example of a variance component.  

 
3. the remainder of the pie The “residual” or “due error” refers to the variability of Y  about !Y  

 

            ♦   Yi − Ŷi( )
i=1

n

∑
2

is called the “residual sum of squares”  

            ♦  Degrees of freedom = df = (n-2) 
            ♦  Division of the “residual sum of squares” by its df yields the “residual mean square”.  

 
Source df Sum of Squares Mean Square 
Regression 
due model 

1 
SSR = Ŷi −Y( )2

i=1

n

∑  
 
SSR/1 

Residual 
due error 

(n-2) 
SSE = Yi − Ŷi( )2

i=1

n

∑  
 
SSE/(n-2) 

Total, corrected (n-1) 
SST = Yi −Y( )2

i=1

n

∑  
 

Tip! – Mean square = (Sum of squares)/(degrees of freedom,df) 
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Be careful!  The question we may ask from an analysis of variance table is a limited one. 
 
 
               Does the fit of the straight line model explain a significant portion of the variability of the  
                    individual Y  about Y ? 
 
               Is this fitted model better than using Y alone? 
 
 
We are NOT asking: 
 
               Is the choice of the straight line model correct? nor 
               Would another functional form be a better choice? 
 
 
We’ll use a hypothesis test approach (another “proof by contradiction” reasoning just like we did in Unit 7!). 
 

♦ Assume, provisionally, the “nothing is going on” null hypothesis that says β1 = 0 (“no linear 
relationship”) 
 

♦ Use least squares estimation to estimate a “closest” line 
 

♦ The analysis of variance table provides a comparison of the due regression mean 
square to the residual mean square 
 

♦ Where does least squares estimation take us, vis a vis the slope β1? 
                                   If  β1 ≠ 0   Then due (regression)/due (residual) will be LARGE 
                                   If  β1 = 0   Then due (regression)/due (residual) will be SMALL 
             

♦ Our p-value calculation will answer the question: 
If the null hypothesis is true and β1 = 0 truly, what were the chances of obtaining an value 
of due (regression)/due (residual) as larger or larger than that observed? 

 
 

To calculate “chances of extremeness under some assumed null hypothesis”  
we need a null hypothesis probability model! 

But did you notice?  So far, we have not actually used one! 
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6.   Assumptions for a Straight Line Regression Analysis 
 

In performing least squares estimation, we did not use a probability model.  We were doing geometry.  
Confidence interval estimation and hypothesis testing require some assumptions and a probability model.  Here 
you go! 
 

 
Assumptions for Simple Linear Regression 

 
♦ The separate observations Y1, Y2, … , Yn are independent. 

 
♦ The values of the predictor variable X are fixed and measured without error. 

 
♦ For each value of the predictor variable X=x, the distribution of values 

of Y follows a normal distribution with mean equal to µY|X=x and common 
variance equal to σY|x

2. 
 

♦ The separate means µY|X=x lie on a straight line; that is – 
 
                                                    µY|X=x  =  β0  +  β1  X  
 
 
 
At each value of X, there is a population of Y for persons with X=x  
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With these assumptions, we can assess the significance of the variance explained by the model. 
 

                                      F = msq(model)
msq(residual)

    with df = 1, (n-2) 

 
β1 = 0 β1 ≠  0 

 
Due model MSR has expected value  
                          σY|X

2 

 
Due model MSR has expected value   

                 σY|X
2  +  β1

2 Xi − X( )2
i=1

n

∑  

  
Due residual MSE has expected value 
                             σY|X

2 
Due residual MSE has expected value 
                                 σY|X

2 
  
F = (MSR)/MSE will be close to 1 F = (MSR)/MSE will be LARGER than 1 
 
 
 
We obtain the analysis of variance table for the model of Z=LOGWT to X=AGE: 
Stata illustration with annotations in red. 
 
 
      Source |       SS       df       MS              Number of obs =      11 
-------------+------------------------------           F(  1,     9) = 5355.60  = MSQ(model)/MSQ(residual) 
       Model |  4.22105734     1  4.22105734           Prob > F      =  0.0000  = p-value for Overall F Test 
    Residual |  .007093416     9  .000788157           R-squared     =  0.9983  = SSQ(model)/SSQ(TOTAL) 
-------------+------------------------------           Adj R-squared =  0.9981  = R2 ajusted for n and # of X 
       Total |  4.22815076    10  .422815076           Root MSE      =  .02807  = Sqaure root of MSQ(residual) 
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This output corresponds to the following.  
Note – In this example our dependent variable is actually Z, not Y. 
Source Df Sum of Squares Mean Square 
Regression 
due model 

1 

 
SSR = Ẑi  - Z( )2

i=1

n

∑ = 4.22063 
 
 SSR/1 = 4.22063 
msr = mean square 
regression 

Residual 
due error 

(n-2) = 9 

 
SSE = Zi  - Ẑi( )2

i=1

n

∑ = 0.00705 
 
SSE/(n-2) = 7/838E-04 
mse = mean square error 

Total, corrected (n-1) = 10 

 
SST = Zi  - Z( )2

i=1

n

∑  = 4.22768 
 

 
 
Other information in this output: 
 
 

♦ R-SQUARED = [(Sum of squares regression)/(Sum of squares total)] 
                         =  proportion of the “total” that we have been able to explain with the fit 
                         = “percent of variance explained by the model”   
 
-  Be careful!    As predictors are added to the model, R-SQUARED can 
   only increase.  Eventually, we need to “adjust” this measure to take 
   this into account.  See ADJUSTED R-SQUARED. 
 
 

♦  We also get an overall F test of the null hypothesis that the simple linear  model does not 
explain significantly more variability in LOGWT than  the average LOGWT.    F  =  MSQ 
(Regression)/MSQ (Residual) 
 

                                                    = 4.22063/0.0007838 
                                                    = 5384.94 with df =1, 9 
 
 
                            p-value = achieved significance < 0.0001.  This is a highly unlikely outcome! à Reject HO.   
                            Conclude that the fitted line explains statistically significantly more of the variability in  
                             Z=LOGWT than is explained by the intercept-only null hypothesis model. 
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7.  Hypothesis Testing  

Straight Line Model:  Y = β0 + β1 X 
 

1) Overall F-Test 
 

Research Question:  Does the fitted model, the !Y  , explain significantly more of the total variability of the 
Y  about Y  than does Y ?    A bit of clarification here, in case you’re wondering.  When the null hypothesis is true, at 
least two things happen:  (1) β1 = 0 and (2) the correct model (the null one) says Y = β0 + error.  
In this situation, the least squares estimate of  β0  turns out to be Y (that seems reasonable, right?)  
 
Assumptions:  As before. 
 
HO and HA: 
 

                                 O 1

A 1

H : β  = 0
H : β   0≠

 

 
Test Statistic: 

                                F = msq(regresion)
msq(residual)
df = 1,(n − 2)

 

 
Evaluation rule: 
 
When the null hypothesis is true, the value of F should be close to 1.  Alternatively, when β1 ≠ 0, the value 
of F will be LARGER than 1.    
 
Thus, our p-value calculation answers:  “What are the chances of obtaining our value of the F or one that is 
larger if we believe the null hypothesis that β1 = 0”? 
 

 
Calculations:   
 
For our data, we obtain p-value =   
 

pr F1,(n-2)≥  |  msq(model)
msq(residual)

  |  b1=0⎡
⎣⎢

⎤
⎦⎥

  =  pr F1,9  ≥ 5384.94⎡⎣ ⎤⎦<<.0001 
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Evaluate: 
Assumption of the null hypothesis that β1 = 0 has led to an extremely unlikely outcome (F-statistic value of 
5394.94), with chances of being observed less than 1 chance in 10,000.  The null hypothesis is rejected. 
 
 
Interpret: 
We have learned that, at least, the fitted straight line model does a much better job of explaining the variability 
in Z = LOGWT than a model that allows only for the average LOGWT. 
 
… later … (BIOSTATS 640, Intermediate Biostatistics), we’ll see that the analysis does not stop here … 
 
 

2) Test of the Slope, β1  
 
 
Notes - 
The  overall F test and the test of the slope are equivalent.  The test of the slope uses a t-score approach to 
hypothesis testing It can be shown that { t-score for slope }2 = { overall F } 
 
 
Research Question:  Is the slope β1 = 0? 
 
Assumptions:  As before. 
 
HO and HA: 
 

                                 
HO :β1 = 0
HA :β1 ≠ 0

 

 
Test Statistic: 
 
To compute the t-score, we need an estimate of the standard error of β̂1  
 

                 SÊ β̂1( ) = msq(residual) 1

Xi − X( )2
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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Our t-score is therefore: 
 

               
t − score =

observed( )− expected( )
sê expected( )

⎡

⎣
⎢

⎤

⎦
⎥ =

β̂1( )− 0( )
sê β̂1( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

df = (n − 2)

 

 
We can find this information in our Stata output.  Annotations are in red. 
 
------------------------------------------------------------------------------ 
           z |      Coef.   Std. Err.      t = Coef/Std. Err.   P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .1958909   .0026768    73.18 = 0.19589/.002678  0.000     .1898356    .2019462 
       _cons |  -2.689255    .030637   -87.78                    0.000     -2.75856   -2.619949 
------------------------------------------------------------------------------ 
 

 
        Recall what we mean by a t-score: 
 
                   t=73.38 says “the estimated slope is estimated to be 73.38 standard error units away from  
                   the null  hypothesis expected value of zero”. 
 
        Check that { t-score }2 = { Overall F }:   
 
                    [ 73.38 ]2 = 5384.62 which is close.  
 
Evaluation rule: 
 
              When the null hypothesis is true, the value of t should be close to zero.   
              Alternatively, when β1 ≠ 0, the value of t will be DIFFERENT from 0.    
 
             Here, our p-value calculation answers:  “Under the assumption of the null hypothesis that β1 = 0, 
             what were our chances of obtaining a t-statistic value 73.38 standard error units away from its 
             null hypothesis expected value of zero”? 
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     Calculations:  
 
      For our data, we obtain p-value =   
 

                                2pr t(n−2) ≥|
β̂1 − 0
sê β̂1( ) |

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= 2pr t9 ≥ 73.38[ ] << .0001  

 
 
     Evaluate: 
 
         Under the null hypothesis that β1 = 0, the chances of obtaining a t-score value that is 73.38 or more  
        standard error units away from the expected value of 0 is less than 1 chance in 10,000.   
 
    Interpret: 
 
         The inference is the same as that for the overall F test.  The fitted straight line model does a statistically  
         significantly better job of explaining the variability in LOGWT than the sample mean. 
 
 
 

3) Test of the Intercept, β0  
 
 
This addresses the question:  Does the straight line relationship passes through the origin?  It is rarely of 
interest. 
 
Research Question:  Is the intercept β0 = 0? 
 
Assumptions:  As before. 
 
HO and HA: 
 

                                           
HO :β0 = 0
HA :β0 ≠ 0
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 Test Statistic: 
 
To compute the t-score for the intercept, we need an estimate of the standard error of β̂0  
 

                 SÊ β̂0( ) = msq(residual) 1
n
+ X 2

Xi − X( )2
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 
 
Our t-score is therefore: 
 

               
t − score =

observed( )− expected( )
sê expected( )

⎡

⎣
⎢

⎤

⎦
⎥ =

β̂0( )− 0( )
sê β̂0( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

df = (n − 2)

 

 
Again, we can find this information in our Stata output.  Annotations are in red. 
 
---------------------------------------------------------------------------------------------------- 
           z |      Coef.   Std. Err.      t = Coef/Std. Err.      P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .1958909   .0026768    73.18                      0.000     .1898356    .2019462 
       _cons |  -2.689255    .030637   -87.78 = -2.689255/.030637  0.000     -2.75856   -2.619949 
------------------------------------------------------------------------------------------------------- 
 

 
  
        Here, t = -87.78 says “the estimated intercept is estimated to be 87.78 standard error units away from its  
        null hypothesis expected value of zero”. 
 
        
Evaluation rule: 
 
              When the null hypothesis is true, the value of t should be close to zero.   
             Alternatively, when β0 ≠ 0, the value of t will be DIFFERENT from 0.    
 
             Our p-value calculation answers:  “Under the assumption of the null hypothesis that β0 = 0, 
             what were our chances of obtaining a t-statistic value 87.78 standard error units away from its 
             null hypothesis expected value of zero”?  



BIOSTATS 540  - Fall 2015                                                Regression and Correlation                                             Page 34 of 44 
 

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

 

 

 
     Calculations:  
 
      p-value =   
 

                                

  

2 pr t(n−2) ≥|
β̂0 − 0

sê β̂0( ) |
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
= 2 pr t9 ≥ 87.78⎡⎣ ⎤⎦ << .0001 

 
 
     Evaluate: 
 
       Under the null hypothesis that the line passes through the origin, that β0 = 0, the chances of obtaining a  
       t-score value that is 87.78 or more standard error units away from the expected value of 0 is less than 1  
        chance in 10,000, again  prompting statistical rejection of the null hypothesis.   
 
    Interpret: 
 
         The inference is that there is statistically significant evidence that the straight line relationship between  
         Z=LOGWT and X=AGE does not pass through the origin.  
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8.   Confidence Interval Estimation 
Straight Line Model:  Y = β0 + β1 X 

 
 
The confidence intervals here have the usual 3 elements (for review, see again Unit 6): 
 
1)  Best single guess (estimate) 
2)  Standard error of the best single guess (SE[estimate]) 
3)  Confidence coefficient :  This will be a percentile from the Student t distribution with df=(n-2) 
 
 
We might want confidence interval estimates of the following 4 parameters: 
 
(1)  Slope 
(2)  Intercept 
(3)  Mean of subset of population for whom X=x0 
(4)  Individual response for person for whom X=x0 
 
 
_____________________________________________________________________________ 
 

1)  SLOPE                                 estimate = !β 1
        

 
             

                                                 sê b̂1( ) = msq(residual) 1

Xi − X( )2
i=1

n

∑
         

 
 

2)  INTERCEPT                     estimate = !β 0
 

 

                                                sê b̂0( ) = msq(residual) 1
n
+ X2

Xi − X( )2
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
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3)  MEAN at X=x0                  estimate = ! ! !Y xX x= = +
0 0 1 0β β  

 

                                                 sê = msq(residual) 1
n
+

x0 − X( )2

Xi − X( )2
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 

4)  INDIVIDUAL with X=x0        estimate =  ! ! !Y xX x= = +
0 0 1 0β β  

 

                                                      sê = msq(residual) 1+ 1
n
+

x0 − X( )2

Xi − X( )2
i=1

n

∑

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 

 
Example, continued 
Z=LOGWT to X=AGE.  
 
Stata yielded the following fit: 
 
------------------------------------------------------------------------------ 
           z |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .1958909   .0026768    73.18   0.000     .1898356    .2019462   ß 95% CI for Slope β1 
       _cons |  -2.689255    .030637   -87.78   0.000     -2.75856   -2.619949 
------------------------------------------------------------------------------ 
 
 

 
95% Confidence Interval for the Slope, β1 
1)  Best single guess (estimate)  =  1̂ 0.19589β =  

2)  Standard error of the best single guess (SE[estimate]) = ( )1̂ 0.00268se β =  

3)  Confidence coefficient = 97.5th percentile of Student t = t df. , .975 9 2 26= =  

95% Confidence Interval for Slope β1 =  Estimate  ±  ( confidence coefficient )*SE 
                                                            
                                                             =  0.19589 ±  (2.26)(0.00268) 
                                                             =  (0.1898, 0.2019) 
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95% Confidence Interval for the Intercept, β0 
 
 
------------------------------------------------------------------------------ 
           z |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
           x |   .1958909   .0026768    73.18   0.000     .1898356    .2019462    

       _cons |  -2.689255    .030637   -87.78   0.000     -2.75856   -2.619949 ß 95% CI for intercept β0 
------------------------------------------------------------------------------ 
 
 

 
 
1)  Best single guess (estimate)  =  0

ˆ 2.68925β = −  

2)  Standard error of the best single guess (SE[estimate]) = ( )0ˆ 0.03064se β =  

3)  Confidence coefficient = 97.5th percentile of Student t = t df. , .975 9 2 26= =  

95% Confidence Interval for Slope β0 =  Estimate  ±  ( confidence coefficient )*SE 
                                                                 =  -2.68925 ±  (2.26)(0.03064) 
                                                                 = (-2.7585,-2.6200) 
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For the brave … 
Stata Example, continued 
Confidence Intervals for MEAN of Z at Each Value of X.  
 
 
. * Fit Z to x 
. regress z x 
 
. * save fitted values xb (this is internal to Stata) to a new variable called zhat 
. predict zhat, xb 
 
. ** Obtain SE for MEAN of Z at each X (this is internal to Stata) to a new variable called semeanz 
. predict semeanz, stdp 
 
. ** Obtain confidence coefficient = 97.5th percentile of T on df=9 
. generate tmult=invttail(9,.025) 
 
. **  Generate lower and upper 95% CI limits for MEAN of Z at Each X 
. generate lowmeanz=zhat -tmult*semeanz 
. generate highmeanz=zhat+tmult*semeanz 
 
. **  Generate lower and upper 95% CI limits for INDIVIDUAL PREDICTED Z at Each X 
. generate lowpredictz=zhat-tmult*sepredictz 
. generate highpredictz=zhat+tmult*sepredictz 
 
 
. list x z zhat lowmeanz highmeanz, clean 
 
        x        z        zhat    lowmeanz   highmeanz   
  1.    6   -1.538   -1.513909   -1.549733   -1.478086   
  2.    7   -1.284   -1.318018   -1.348894   -1.287142   
  3.    8   -1.102   -1.122127   -1.148522   -1.095733   
  4.    9    -.903   -.9262364   -.9488931   -.9035797   
  5.   10    -.742   -.7303454   -.7504284   -.7102624   
  6.   11    -.583   -.5344545   -.5536029   -.5153061   
  7.   12    -.372   -.3385637   -.3586467   -.3184806   
  8.   13    -.132   -.1426727   -.1653294    -.120016   
  9.   14     .053    .0532182    .0268239    .0796125   
 10.   15     .275    .2491091    .2182332     .279985   
 11.   16     .449        .445    .4091766    .4808234   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



BIOSTATS 540  - Fall 2015                                                Regression and Correlation                                             Page 39 of 44 
 

Nature  Population/ 
Sample 

 Observation/ 
Data 

 Relationships/ 
Modeling 

 Analysis/ 
Synthesis 

 

 

 

Stata Example, continued 
Confidence Intervals for INDIVIDUAL PREDICTED  Z at Each Value of X.  
 
 
. * Fit Z to x 
. regress z x 
 
. *Save fitted values to a new variable called zhat 
. predict zhat, xb 
 
 
. ** Obtain SE for INDIVIDUAL PREDICTION of Z at given X (internal to Stata) to a new variable sepredictz 
. predict sepredictz, stdf 
 
. ** Obtain confidence coefficient = 97.5th percentile of T on df=9 
. generate tmult=invttail(9,.025) 
 
 
. **  Generate lower and upper 95% CI limits for INDIVIDUAL PREDICTED Z at Each X 
. generate lowpredictz=zhat-tmult*sepredictz 
. generate highpredictz=zhat+tmult*sepredictz 
 
. ***  List Individual Predictions with 95% CI Limits 
 
. list x z zhat lowpredictz highpredictz, clean 
 
        x        z        zhat   lowpred~z   highpre~z   
  1.    6   -1.538   -1.513909   -1.586824   -1.440994   
  2.    7   -1.284   -1.318018   -1.388634   -1.247402   
  3.    8   -1.102   -1.122127   -1.190902   -1.053353   
  4.    9    -.903   -.9262364   -.9936649   -.8588079   
  5.   10    -.742   -.7303454   -.7969533   -.6637375   
  6.   11    -.583   -.5344545   -.6007866   -.4681225   
  7.   12    -.372   -.3385637   -.4051715   -.2719558   
  8.   13    -.132   -.1426727   -.2101013   -.0752442   
  9.   14     .053    .0532182   -.0155564    .1219927   
 10.   15     .275    .2491091    .1784932     .319725   
 11.   16     .449        .445     .372085     .517915   
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9.  Introduction to Correlation 

 
Definition of Correlation 
 
A correlation coefficient is a measure of the association between two paired random variables (e.g. height and 
weight).   
 

The Pearson product moment correlation, in particular, is a measure of the strength of the straight 
line relationship between the two random variables.   

 
Another correlation measure (not discussed here) is the Spearman correlation.  It is a measure of the 
strength of the monotone increasing (or decreasing) relationship between the two random variables.  
The Spearman correlation is a non-parametric (meaning model free) measure. It is introduced in 
BIOSTATS 640, Intermediate Biostatistics.  

 
 
 Formula for the Pearson Product Moment Correlation ρ 
 

• Population product moment correlation =  ρ 
 

• Sample based estimate  = r. 
 

• Some preliminaries: 
 
         (1)   Suppose we are interested in the correlation between X and Y 
 

          (2)  
 
cov̂(X,Y) = 

(xi − x)(yi − y)
i=1

n

∑
(n-1)

=
Sxy

(n-1)
          This is the covariance(X,Y) 

 

         (3)  
 
var̂(X) = 

(xi − x)2

i=1

n

∑
(n-1)

=
Sxx

(n-1)
                             and similarly       

 

         (4)   
 
var̂(Y) = 

(yi − y)2

i=1

n

∑
(n-1)

=
Syy

(n-1)
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         Formula for Estimate of Pearson Product Moment Correlation from a Sample 
 
 

                                              
ˆcov(x,y)ˆ   =  r  =  

ˆ ˆvar(x)var(y)
ρ  

 
 

                                                               xy

xx yy

S
S S

=  

 
 
If you absolutely have to do it by hand, an equivalent (more calculator/excel friendly formula) is 
 

                  

n n

i in
i=1 i=1

i i
i=1

2 2n n

i in n
2 2i=1 i=1
i i

i=1 i=1

x y
x y

nˆ   =  r  =  

x y
x y

n n

ρ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠−

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑
∑

∑ ∑
∑ ∑

 

 
 
 

• The correlation r can take on values between 0 and 1 only 
 

• Thus, the correlation coefficient is said to be dimensionless – it is independent of the units of x or y. 
 

• Sign of the correlation coefficient (positive or negative) = Sign of the estimated slope 1̂β . 
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There is a relationship between the slope of the straight line,  β̂1 , and the estimated correlation r.   
 
 
 
                              Relationship between slope  β̂1  and the sample correlation r  

Tip!   This is very handy… 
 
 

      Because         xy
1

xx

Sˆ
S

β =              and              xy

xx yy

S
r 

S S
=  

 
 
 
     A little algebra reveals that 
 
 

                                             xx
1

yy

S ˆr  =   
S

β
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
 
Thus, beware!!! 
 

• It is possible to have a very large (positive or negative) r might accompanying a very 
non-zero slope, inasmuch as  
 

                      -  A very large r might reflect a very large Sxx , all other things equal 
 
                     -   A very large r might reflect a very small Syy , all other things equal. 
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                                           10.   Hypothesis Test of Correlation 
 

 
The null hypothesis of zero correlation is equivalent to the null hypothesis of zero slope. 
 
Research Question:  Is the correlation ρ = 0?  Is the slope β1 = 0? 
 
Assumptions:  As before. 
 

      HO and HA: 
 

                                 
  

HO :ρ = 0
H A :ρ ≠ 0

 

 
      Test Statistic: 
       A little algebra (not shown) yields a very nice formula for the t-score that we need. 

                                                                    

  

t − score =
r (n-2)

1− r2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

df = (n− 2)

 

 
 We can find this information in our output.  Recall the first example and the model of Z=LOGWT to X=AGE: 
 
The Pearson Correlation, r, is the  R-squared in the output. 
  
     Source |       SS       df       MS              Number of obs =      11 
-------------+------------------------------           F(  1,     9) = 5355.60 
       Model |  4.22105734     1  4.22105734           Prob > F      =  0.0000 
    Residual |  .007093416     9  .000788157           R-squared     =  0.9983 
-------------+------------------------------           Adj R-squared =  0.9981 
       Total |  4.22815076    10  .422815076           Root MSE      =  .02807 

 
Pearson Correlation, r = 0.9983 = 0.9991  
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Substitution into the formula for the t-score yields 
 

                   

  

t − score =
r (n-2)

1− r2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= .9991 9

1-.9983

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 2.9974

.0412
⎡

⎣
⎢

⎤

⎦
⎥ = 72.69

 

Note:  The value .9991 in the numerator is  r= R2 = .9983 = .9991  
 
 
This is very close to the value of the t-score that was obtained for testing the null hypothesis of zero slope.  The 
discrepancy is probably rounding error.  I did the calculations on my calculator using 4 significant digits.  Stata probably 
used more significant digits - cb. 
 
 
 
 
 
 
 


